
Always program as if the person who will be maintaining your program is a
violent psychopath that knows where you live.

– Martin Golding.



University of Alberta

PREDICTING HOMOLOGOUS SIGNALING PATHWAYS USING
MACHINE LEARNING

by

Babak Bostan

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Babak Bostan
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever

without the author’s prior written permission.



Examining Committee

Russell Greiner, Computing Science

Duane Szafron, Computing Science

Warren Gallin, Cell Biology

Robert Holte, Computing Science



To the best parents ever,

You are my life.



Abstract

Understanding biochemical reactions inside cells of individual organisms is a key

factor for improving our biological knowledge. Signaling pathways provide a road

map for a wide range of these chemical reactions that convert one signal or stimulus

into another. In general, each signaling pathway in a cell involves many different

proteins, each with one or more specific roles that help to amplify a relatively small

stimulus into an effective response. Since proteins are essential components of a

cell’s activities, it is important to understand how they work – and in particular,

to determine which of specie’s proteins participate in each role. Experimentally

determining this mapping of proteins to roles is difficult and time consuming. For-

tunately, many individual pathways have been annotated for some species, and the

pathways of other species can often be inferred using protein homology and the

protein properties.

We present an automatic approach, PSP, that uses the signaling pathways in

well-studied species to predict which proteins will serve which roles in less-studied

species. Our machine learning approach creates a predictor that achieves a general-

ization F-measure of 78.2% when predicting protein roles in 11 different pathways

across 14 different species. We also describe an evaluation method that suggests

our prediction might be more accurate than this F-measure. This method makes

predictions based on historical data, then evaluates the prediction based on new

data that include more recent annotations of the proteins. This process revealed that

our historical predictor was correct about many predictions that were considered to

be wrong based on the historical data.
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Chapter 1

Introduction

Understanding chemical processes in living organisms is one of biology’s main

challenges. Even though the core chemistry of DNA1 sequencing has not changed

significantly in recent years, the advent of low-cost high-throughput DNA sequenc-

ing was a huge step toward this goal (Hall, 2007). These methods have significantly

accelerated biological research and discovery by providing us with a huge source of

information that can help us solve the complex puzzle of life. However, interpret-

ing the vast amount of data represented by species’ genomes cannot be done eas-

ily, due to their size and complexity, without efficient and accurate computational

techniques. This dissertation presents a novel automated computational technique

that effectively assists biologists to find another piece of the puzzle. Section 1.1

describes the biochemical pathways we are using in our task, which is given in

Section 1.2.

1.1 Biochemical pathways

The cell is the basic functional unit and building block of all living organisms

(Campbell and Reece, 2001). Each cell receives nutrients and information sig-

nals and carries out specialized functions. These functions, including growth, cell

division and protein synthesis, require compounds (small molecules) and proteins.

Proteins perform these functions through a series of simple interactions with other

proteins and small-molecule substrates. Many of these simple interactions between

1See Campbell and Reece (2001) for description of basic biology terms.
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proteins or compounds transforms one set of molecules into another, these are called

chemical reactions (Campbell and Reece, 2001). A network of these chemical re-

actions when viewed together, forms a pathway. Many chemicals may be involved

in each pathway, and the reactions between these chemicals can be quite elaborate.

To better understand and accommodate research on pathways, biologists divide the

pathways into different categories, which have different properties.

1.1.1 Metabolic pathway

Metabolism is managing the material and energy resources of the cell. It involves a

step-by-step modification of the initial molecules to shape them into other products.

This modification corresponds to a sequence of reactions that is called a metabolic

pathway. In this process each reaction is controlled by some proteins, that are

enzymes – i.e., that accelerate a reaction without being consumed (Campbell and

Reece, 2001). This property of the enzymes enables the cell to manage its chemical

activities. When a cell needs more energy it uses some enzymes to release energy

by breaking down complex organic matters to simpler compounds. By using other

enzymes a cell can use the energy to construct components of the cell (Wallace

et al., 2001; Campbell and Reece, 2001).

Figure 1.1 shows a small sample of a metabolic pathway, synthesis and degrada-

tion of ketone bodies (KEGG, 2009b). Here rectangles refer to enzymes and circles

refer to small molecules. This graph shows both synthesis and degradation of ke-

tone bodies, which are consuming and releasing energy respectively. For example,

this graph shows that Acetoacetate can be converted to Acetyl-CoA when the en-

zymes labeled 2.8.3.5 and 2.3.1.9 appear in the relevant environment, in sufficient

quantity. This degradative process, which normally happens in the brain and heart

when insufficient glucose is available, can produce energy. On the other hand, when

the body breaks down fatty acids, it converts Acetyl-CoA to Acetoacetate and (R)-

3-Hydroxybutyrate (as by-products). This process, which needs enzymes 2.3.3.10,

4.1.3.4 and 1.1.1.30, consumes energy. The concentration of enzymes can control

which one of these processes is active at any time in a metabolic pathway.
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Figure 1.1: Synthesis and degradation of ketone bodies. Enzyme labels in this
picture are examples of an enzyme classification (EC) number (Moss, 2009). The
arcs show the reactions. (This figure is taken from KEGG, 2009b)

1.1.2 Signaling pathway

A series of chemical reactions can also enable communication between different

parts of a cell or between one cell and another. These intracellular and intercellu-

lar communications, which play a crucial role in the life of a cell, are called cell

signaling. These chemical reactions inside the cell can be connected (as a directed

graph) to form a complicated network of reactions. This network of reactions is

activated by receptors on the surface of the cell and includes secondary messenger

molecules, proteins and other compounds.

This signaling process involves three stages: reception, transduction, and re-

sponse. In the reception stage, the receptor proteins of a cell recognize a signal

molecule. These signal molecules, which are usually too large to pass through the

plasma membrane, normally bind to the receptor protein and change its shape. The
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Figure 1.2: Cell signaling stages: 1- Reception 2- Transduction 3- Response. (This
figure is taken from Campbell and Reece, 2001)

protein’s changed shape starts a transduction stage by interacting with another cel-

lular molecule or by causing the aggregation of two or more receptor molecules.

The transduction stage sometimes occurs in a single step but more often requires

a sequence of changes in a series of different molecules — a signal-transduction

pathway. This stage is like falling dominoes, where the signal-activated receptor

activates another protein, which activates another molecule, and so on. Multiple

steps in this stage can amplify the signal, since some of the molecules in each step

can activate multiple molecules, resulting in a large number of activated proteins

at the end of the pathway. Ultimately, a signal-transduction pathway leads to the

regulation of one or more cellular activities, which is the response stage (Campbell

and Reece, 2001). Figure 1.2 shows these three stages. In this figure we can see

how a signal molecule can activate a receptor in the plasma membrane of the cell

and how this reception can start a sequence of changes inside the cell and finally

cause cellular responses.

We refer to the sequence of changes that are involved in cell signaling as a sig-

naling pathway. Figure 1.3 provides an example of the Notch signaling pathway in

H. sapiens. Here one of the proteins that is involved in this pathway, the Notch pro-

tein, acts like a trigger (reception stage). When two cells make a direct cell-to-cell

contact, this protein starts a series of reactions inside the cell (transduction stage)
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that creates a signal inside the nucleus to alter gene expression (response stage).

This mechanism controls multiple cell differentiation processes during embryonic

and adult life.

Figure 1.3: Notch signaling pathway (This figure is taken from KEGG, 2009a)

Understanding signaling pathways can help us to discover previously unknown

aspects of cellular life and may provide useful information for improving health.

For instance, many known diseases, including diabetes and many cancers, are caused

by cellular abnormalities linked to signaling pathway malfunctions (Seifter et al.,

2005). A better understanding of signaling pathways could lead to better treatments

for these afflictions by aiding in drug design and development of other pathway

interventions.

1.2 The problem

Unfortunately, experimental approaches for investigating signaling pathways are

extremely difficult due to the large number of proteins in each cell and a lack of

information about which proteins are involved in each pathway and the roles that

these proteins play in signaling. It would be very useful to have an automated sys-

tem that can ease the process of discovering new signaling proteins and predicting

their role. However, because of the complex nature and unknown aspects of biolog-
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ical problems, implementing such a system can be very challenging.

In this dissertation, we provide an automated system that learns to predict which

proteins in a less studied species play each role by using signaling pathways in well

studied organisms. This dissertation makes following research contributions:

1. It shows that our Predict Signaling Pathway (PSP) system can accurately pre-

dict signaling pathways in less studied species based on signaling pathways

in well-known organisms.

2. It demonstrates that various protein’s properties can improve the accuracy of

prediction over the basic methods.

3. It provides empirical results to show that our PSP system can achieve a gen-

eralization F-measure of 78.2 when predicting protein roles in 11 different

pathways across 14 different species.

Chapter 2 briefly describes the classifiers along with the features that are used

in our system. Chapter 3 describes the prediction process. Chapter 4 provides

our evaluation method and experimental results. Finally, Chapter 5 gives a brief

conclusion. The rest of this chapter describes some related work. (Many of these

results has been published as Bostan et al. (2009).)

1.3 Related work

Many research projects use computational approaches to tackle biological system

problems. Several research projects tackle biological system problems using in-

formation retrieval, entity recognition or information extraction. For example, the

best-known biomedical information retrieval (IR) system, PubMed, uses IR meth-

ods to allow the user to retrieve all documents that contain certain combinations

of terms. Information Hyperlinked over Proteins (IHOP) (Hoffmann and Valencia,

2004) is a web-based tool that allows the user to browse PubMed abstracts on the

basis of the biomedical entities that they mention, using information extraction to

automatically extract structured information from unstructured documents. GENIA
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(Ohta et al., 2002) is another system that uses text mining in the context of bio-

logical problems. This system uses natural-language processing to automatically

extract information from abstracts in PubMed.

Our PSP, however, builds a classifier to tackle the problem. Computational

approaches based on building classifiers, are very popular for addressing complex

biological challenges. For example, Furey et al. (2000) used methods based on

Support Vector Machines (SVMs) to identify genes useful in cancer diagnosis from

micro-arrays. Guyon et al. (2002) used SVMs and recursive feature elimination to

identify a small subset of genes from broad patterns of gene expression data, based

on DNA micro-arrays, to produce a classifier suitable for genetic diagnosis and

drug discovery. Ding and Dubchak (2001) predicted the structure of proteins using

Neural Networks and SVMs. Several research groups including Park and Kanehisa

(2003) and Lu et al. (2004) have used machine learning to produce classifiers that

can predict the subcellular location of proteins. Many research projects are focused

on predicting protein function. For example, Hishigaki et al. (2001) predict pro-

tein function from protein-protein interaction data, by predicting the function of a

protein based on the function of its interacting protein – both direct and indirect

interaction. Vázquez et al. (2003) use another approach to predict protein function

using protein-protein interaction networks. They use sequence similarity to cluster

the proteins into groups by minimizing the number of protein interactions among

different functional categories. However, these projects can not be used for path-

way prediction without use of expert biologists mainly because of their error rate

and variety of functional categories.

Despite a growing volume of research that uses computational techniques to

solve biological problems, there is a dearth of research about applying computa-

tional techniques to help us better understand signaling pathways. Some results

have been published on using computational techniques to understand metabolic

pathways – e.g., Schilling et al. (1999) provide a good survey of this work up to

1999. There have only been a few recent contributions; e.g., Ma and Zeng (2003)

find shortest paths between metabolites, Pireddu et al. (2006) use machine learning

to predict the role of proteins in metabolic pathways and the MetaCyc group (Caspi
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et al., 2008) provide two databases of organism-specific metabolic pathways: some

experimentally elucidated and some predicted (BioCyc).

However, none of these projects focus on signaling pathways. Previous work on

signaling has been restricted to predicting individual signaling peptides and sorting

signals (Nielsen et al., 1999) or the effects of single genes on the overall function-

ing of signaling networks (Craven, 2002) or predicting protein-protein interactions

(Yaffe et al., 2001) that can be used to predict signaling pathways. While there are

also many results that deal with a particular pathway or species, they each focus on

one particular pathway or a subset of one pathway, and are not expandable to the

other pathways or other parts of pathways – e.g., Kim et al. (2004). The Panther

group (Thomas et al., 2003) also provide a database of pathways, both metabolic

and signaling. Their system is a collection of proteins gathered by human experts

on which they can use a Hidden Markov Model (HMM) to classify the functionality

of novel protein sequences. While their computational approach has high coverage

over mammalian protein-coding genes, it is not clear how to measure its accuracy

because they do not make their specific prediction available, which makes it difficult

to evaluate their system or compare it with other approaches.

The Predict Signaling Pathway (PSP) system presented in this dissertation uses

approaches similar to Pireddu et al. (2006), but in the more complex domain of pre-

dicting signaling pathways. Both systems use homologous pathways and predict

individual nodes in the graph structure. However, while Pireddu et al. use BLAST

and HMM to predict which proteins (enzymes) will appear in metabolic pathways,

our PSP uses a very different technique, using machine-learned classifiers, to pre-

dict proteins in signaling pathways. Moreover, we employ a “retrospective” anal-

ysis that suggests that PSP’s predictions are highly effective in predicting proteins

that have not yet been experimentally verified.

Fröhlich et al. (2008) provides another prediction system that predicts pathways

using protein domains, which are each a subsequence of the protein’s peptide string

that is considered a functional unit that can evolve or act independently of the rest of

the protein sequence. Fröhlich et al. predict whether a gene is involved in a particu-

lar pathway or not, but they do not provide a way to predict the specific role of each
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protein within the pathways. While their system could determine whether a gene

belongs to a subset of roles in these signaling pathways, they limit their predictions

to annotated human genes that have domain signatures. Testing their system on 10

out of the 11 human signaling pathways available in the KEGG database (Kanehisa

et al., 2008), they obtained an F-measure of approximately 80%. Our PSP system,

on the other hand, can predict pathways using the whole proteome of any species

and can predict the exact role of each protein within arbitrary signaling pathways,

with an overall F-measure of 90.4% over all 11 human signaling pathways available

in KEGG.
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Chapter 2

Background

Data classification techniques map each data instance to a class based on the values

of its features. Finding the best mapping technique is the core of each classification

system. Section 2.1 briefly describes the classifiers that are used in our system.

Section 2.2 provides a method to evaluate the accuracy of the classifiers. The rest

of this chapter (Section 2.3 through Section 2.6) briefly describes the features that

are used in our system. A complete description of how these features are used in

our system is given later in the dissertation (see Chapter 4).

2.1 Classifiers

The problem of finding useful patterns in the input data is a fundamental challenge.

Machine learning’s major focus is addressing this problem by providing a group of

tools that automatically learn to recognize and use these patterns. A classifier is a

mapping from each input sample to a finite number of discrete categories, which

can be learned using a learner.

Learners can be divided into different categories, such as unsupervised and su-

pervised. Unsupervised learning seeks to determine how the data is organized using

only unlabeled samples. This approach is especially useful when the classes are un-

known (or there is no class at all) or there is not enough labeled data. For example,

in sequence analysis, clustering is used to group homologous sequences into gene

families. On the other hand, supervised learners produce a classifier using pairs of

input samples and correct class labels, called the training data.
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The goal of supervised learning is to predict the best class for any valid input

instance, after learning on training examples. To achieve this goal, the prediction

process is divided into two different phases: training and testing. During the train-

ing phase, the learner develops a predictive model from the training data. In the

subsequent testing phase, this trained predictive model is used to classify (that is,

predict a label for) an unlabeled instance. In general, the classifier can be evaluated

based on the number of correctly classifier samples and misclassified samples.

The goal of learning is to produce a predictive model that performs well on

unseen data (i.e., data that was not in the training sample). Hence, the predictive

model should be trained in such a way that it avoids predictions based on specific

properties of the training data. Otherwise, the performance on the training samples

could be artificially high compared to the performance on unseen data. This prob-

lem, called overfitting, often occurs when the model is very complex in relation to

the amount of available training data.

To accurately estimate the performance of the predictor, the labeled data can be

divided into two exclusive subsets, a training-set and a test-set. The predictor then

can be trained on all data to produce a predictor. An evaluation method then can be

used to produce an estimate of the quality of that predictor.

There are many different classifiers that can be applied to each problem. How-

ever, determining a suitable classifier for a given problem is still more of an art

than a science. Two of the most widely used classifiers are k-nearest neighbor

and support vector machines. The next two sub-sections briefly describe these two

classifiers because PSP uses support vector machines, and we later see k-nearest

neighbor as another alternative to show how well PSPworks.

2.1.1 K-Nearest Neighbor

K-nearest neighbor is one of the simplest classifiers. This classifier classifies each

test instance by a majority vote of its k nearest neighbors (Bishop, 2006). For

example, as shown in Figure 2.1, by choosing k = 3 the new instance (shown as an

octagon) would be classified as a circle.

Choosing a correct distance metric is one of the challenges when k-nearest
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Figure 2.1: Using k-nearest neighbor to classify an unlabeled instance (octagon).
Choosing k = 3 assigns circle to the unlabeled instance while choosing k = 5
classify this instance as a rhombus.

neighbor is being used. Normally, Euclidean distance can be used as the dis-

tance measure when the training examples are vectors in a multidimensional fea-

ture space. However in some problems features are not numerical, so other options

should be considered unless these non-numerical features can be mapped to numer-

ical values.

As Figure 2.1 shows, choosing the correct k can affect the performance of the

system. For example, choosing k = 5, instead of k = 3, can change the prediction

of the unlabeled instance to a rhombus. Generally, larger values of k reduce the

effects of noise in the data. On the other hand, a smaller k is more useful when

distinct boundaries between classes are required. However, the best choice of k

depends upon the data and there is no rule to determine which k works best for a

particular problem. Heuristic techniques such as cross-validation (see Section 2.2)

can be used to select an appropriate k. The term nearest neighbor algorithm is used

for the special case of k-nearest neighbor where k = 1. In this case the predicted

class for each sample would be the label of the closest training example.

2.1.2 Support Vector Machine

Support vector machine (SVM) is a supervised learning method that is used for clas-

sification (Bishop, 2006). As we used SVM as the core of our system, this chapter
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provides a short review of SVM. SVM classifiers belong to the family of linear sep-

arators, which divide the input data into two different classes by using a separating

hyperplane. Constructing such a hyperplane can be challenging because the main

goal of classifiers is correctly classifying the unlabeled data, not the labeled data.

A data sample is linearly separable if there is a hyperplane that correctly classifies

all the labeled instances. SVM divides the data into two classes using a hyperplane

that maximises the margin, which is the distance from it to the nearest labeled data

sample on each side – see Figure 2.2. In general such a hyperplane can minimize

the misclassification of unlabeled data because it has the largest minimum distance

to the labeled samples of both classes (Bishop, 2006).

Figure 2.2: Support Vector Machine separates data by using a hyperplane that max-
imizes the margin.

The training data set contains N input instances ~x1, ~x2, · · · , ~xN , with cor-

responding target values t1, t2, · · · , tN where ~xi ∈ <n is a feature vector and

tn ∈ {−1, +1}. The separating hyperplane, ~w · ~x + b, requires a weight vector

~w ∈ <n and a bias parameter b ∈ <. The support vector machine finds these

parameters in the training phase, using input samples and their labels. After find-

ing separating hyperplane in the training phase, when a new data sample ~x can be

simply classified according to the sign of classification function γ(~x) = ~w · ~x + b.

13



Linearly separable data

The separating hyperplane might not be unique as many values of ~w and b can

classify the training data sample. Support vector machines choose these parameters

to maximize the “margin”, that is, the perpendicular distance of an instance ~xn

from the separating hyperplane. This hyperplane γ(~x) = 0 is given by following

equation.

|γ(~xn)|
‖ ~w ‖

=
|~w · ~xn + b|
‖ ~w ‖

(2.1)

As Figure 2.2 shows this distance for at least three data samples is equal to the

margin. For linearly separable data set, we can rewrite Equation 2.1 as follows:

tnγ(~xn)

‖ ~w ‖
=

tn(~w · ~xn + b)

‖ ~w ‖
(2.2)

Support vector machines seek the parameters ~w and b to maximize the mar-

gin, which is the perpendicular distance of the closest xn from the hyperplane.

Therefore, the required ~w and b can be found by solving the following optimization

problem.

arg max
~w,b

{
min

n

[tn(~w · ~xn + b)

‖ ~w ‖
]}

(2.3)

As scaling ~w → κ~w and b → κb produce the same classifier, therefore without

loosing the generality of the problem, we can set tn(~w · ~xn + b) = 1 for the closest

instance. In this case, following constraints will be satisfied by all instances.

tn(~w · ~xn + b) ≥ 1, n = 1, · · · , N (2.4)

Equation 2.3 simplifies to the following optimization problem.

arg max
~w,b

(
min

n
[

1

‖ ~w ‖
]
)

= arg max
~w,b

( 1

‖ ~w ‖
)

= arg min
~w,b

(‖ ~w ‖) (2.5)

subject to the constraints given by Equation 2.4.
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Overlapping class distributions

In the previous sub-section we assumed the training data was linearly separable. In

practice, however, the class distributions may overlap, in which case exact separa-

tion of data might not be possible. Therefore, we need to relax the hard margin

constraints given by Equation 2.4 to allow the support vector machines to misclas-

sify some of the training data samples.

Figure 2.3: Illustration of the slack variables ξn.

To do this, we use slack variables, ξn, to allow the data samples to be on the

wrong side of the hyperplane. So, Equation 2.4 should be replaced with

tn(~w · ~xn + b) ≥ 1− ξn, n = 1, · · · , N (2.6)

where slack variables are constrained to satisfy ξn ≥ 0 for n = 1, · · · , N . Here,

each slack variable is associated with one training instance and set to zero for data

samples that are inside the correct margin boundary and ξn = |tn − y(~xn)| for the

others. Figure 2.3 shows different values of slack variables for several data samples.

To maximize the margins and also penalize the misclassification, we optimize the

following optimization problem instead of Equation 2.5:

arg min
~w,b

(C
N∑

n=1

ξn +
1

2
‖ ~w ‖2) (2.7)

where C controls the balance between the margin and misclassification penalty. To
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solve this optimization problem we need a very powerful mathematical method,

Lagrange Multiplier.

Lagrange Multiplier

Lagrange multipliers are used to find the stationary point of a function of several

variables subject to one or more constraints. Consider finding the minimum of

f(~w, ~ξ, b) = C
N∑

n=1

ξn +
1

2
‖ ~w ‖2

subject to constraints given in Equation 2.6, which we rewrite in the following form:

gn(~w, ξn, b) = tn(~w · ~xn + b)− 1 + ξn ≥ 0, n = 1, · · · , N (2.8)

There are two possible cases, according to whether the constraint stationary

point lies in the region gn(~w, ξn, b) > 0 or on the boundary gn(~w, ξn, b) = 0. In the

former case, gn(~w, ξn, b) plays no role and so we need to find the stationary point

of f(~w, ξn, b), which can be found using the following equation:

5f(~w, ξn, b) = 0 (2.9)

In the latter case, we note that at any point on the constraint surface, the gra-

dient 5g(~w, ξn, b) will be orthogonal to the surface. In addition, because we are

trying to maximize f(~w, ξ, b), such a point must have the property that the vec-

tor 5f(~w, ξn, b) also must be orthogonal to the constraint surface. Therefore,

5f(~w, ξn, b) and 5g(~w, ξn, b) are parallel. Figure 2.4 demonstrates a simplified

version of the problem, where f and g have only two arguments, to clarify the case.

Because f and g are parallel in the extremum point, there must exist a parameter λ,

known as Lagrange multiplier, such that

5f + λ5 g = 0 (2.10)

Note Equation 2.10 holds for both cases, due to Equation 2.9

By defining L ≡ f +λg, which is called the Lagrangian function, we can simply

derive Equation 2.10 by setting 5L = 0. Therefore, we can find the minimum of
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Figure 2.4: A geometrical picture of function f(x, y) (dashed lines) and constraint
g(x, y) = 0 (solid line). Arrows show their derivatives. At each stationary point of
f , both derivatives are orthogonal to the constraint surface, which is a curve in this
example. (This figure is taken from Bernat, 2009)

function f(~w, ξ, b) subject to the constraints given in Equation 2.8 by finding the

stationary point of L(~w, ξ, b, λ) with respect to ~w, ~ξ, b and λ.

L(~w, ξ, b, ~λ) = C
N∑

n=1

ξn +
1

2
‖ ~w ‖2 +

N∑
n=1

λn{tn(~w~x + b)− 1 + ξn} (2.11)

where ~λ = (λ1, λ2, · · · , λN) and λn ≤ 0 for n = 1 · · ·N . Notice the optimal λ will

not have λn > 0 because we are looking for the minimum of function f(~w, ξ, b).

We also know that whether the stationary point lies on the border g(~w, ξ, b) = 0 or

whether it lies in the region gn(~w, ξ, b) > 0, the value of λgn(~w, ξ, b) would be zero.

So the solution to the problem of minimizing f(~w, ξ, b) subject to g(~w, ξ, b) ≥ 0 is

obtained by optimizing Equation 2.11 subject to the following constraints:

gn(~w, ξ, b) ≥ 0 n = 1 · · ·N (2.12)

λn ≤ 0 n = 1 · · ·N (2.13)

λngn(~w, ξ, b) = 0 n = 1 · · ·N (2.14)
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Non-linear classification

Equation 2.11 can be used to classify linearly separable data, however in many

problems, linear separators in the feature space might not be useful. Figure 2.5(left)

shows a sample distribution of training data in 2-dimentional feature space. There

is no straight line that can separate the input data in this example. However, if we

could transform the feature space to form a linearly separable distribution of data

samples, such as Figure 2.5(right), a linear classifier could be used.

Figure 2.5: Using a kernel function. (left) Distribution of data samples in the input
space. (right) Data samples after transforming the feature space by a kernel function
φ. (This figure is taken from Takahashi, 2009)

A kernel function φ(·) that transforms one feature space to another sometimes

provides us with a powerful tool that can solve the separation problem. By replacing

~xn with φ(~xn) in all the above equations (Equation 2.1 to Equation 2.14), we can

place the separating hyperplane in the transformed feature space. This approach,

which is called the Kernel Method, is one of the main ideas in constructing effec-

tive support vector machines. Linear, polynomial, radial basis and sigmoid kernel

functions are some of the simple kernel functions. However more complicated ker-

nel functions can be used when it is needed. Selecting the best kernel function

depends on the feature space and is very difficult for some problems. However, au-

tomatic approaches such as cross-validation can be used to determine which kernel

function is probably best for any particular problem. We have used cross-validation

as a part of PSP to choose between different kernel functions. Next section briefly
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describe cross-validation.

2.2 Cross-validation

Cross validation is a technique that estimates the practical accuracy of a predictor.

In cross validation, the labeled data is partitioned into complementary subsets. One

subset, the training set, is used to train the classifier while the other subset, called

the testing set, is used for validation. Multiple rounds of cross-validation are per-

formed using different partitioning to reduce the variability. The validation results

then are averaged over the rounds. This technique is especially useful when the

supply of data samples is limited or there is limited number of positive (or nega-

tive) samples. Using cross-validation gives us the opportunity to reduce bias due to

poor partitioning of data samples (Bishop, 2006; Kohavi, 1995).

There are various types of cross-validation due to different partitioning tech-

niques. Random sub-sampling splits the data randomly. The advantage of this

method is that the proportion of the training and testing sets is not dependent on the

number of rounds. However, some samples may never be selected for the testing set

whereas others be selected several times. In K-fold cross-validation, each sample

is selected for the testing set once. This technique partitions the data into K com-

plementary subsets and in each round, one of these subsets is used as testing set and

the rest are used as the training set. If K is equal to the number of data samples

this technique is called leave-one-out cross-validation (Bishop, 2006). Figure 2.6

shows how K-fold cross-validation works for the case of K = 4.

2.3 Basic Local Alignment Search Tool

The similarity between two proteins can be determined by comparing their amino-

acid sequences. Proteins that have the same amino-acid sequences serve the same

functions, while most of the proteins that do not have similar amino-acid sequences

have different functionalities. However, minor amino-acid sequence modifications

might not hugely change protein functionality. Alignment is a way to take into

account the effects of these modifications. We can define a distance measure be-
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Figure 2.6: K-fold cross-validation for the case of K = 4. Each row demonstrates
one round of cross-validation and shows the entire data set (large rectangle), which
is partitioned into 4 complementary subsets. In each round one subset (shaded) is
used as testing set and the other three subsets are used as a training set. The final
result is the average of the accuracy of all four rounds. (This figure is taken from
Bishop, 2006)

PKC-gamma: HKQCVINVPSLCGMDHTEKRGRIYL--KAEVADEKLHVTV
H++CV +VPSLCG+DHTE+RGR+ L +A +DE +H+TV

PRKCA : HRRCVRSVPSLCGVDHTERRGRLQLEIRAPTSDE-IHITV

Figure 2.7: A part of alignment of PKC-gamma in M.musculus (P63318) and
PRKCA in H. sapiens (Q7Z727). Upper and lower lines show amino acid sequences
of PKC-gamma and PRKCA respectively. The center line shows the alignment.
Each letter in this line shows an exact match and each “+” indicates a positive score
substitution. Each “-” in the first sequence shows an insertion and each “-” in the
second sequence shows a deletion. The other blanks in the middle line shows neg-
ative score substitution.

tween two different sequences of amino-acids by assigning cost values to possible

sequence modifications, such as insertion, deletion and substitution. This distance

metric can be used to define the similarity of two proteins – the lower the total cost

of the modifications, the more similar the proteins. Figure 2.7 shows how using

alignment can consider such changes.

Although modified proteins can be functionally different from the original ones,

all modifications do not equally change the functionality of the proteins. Remov-

ing an amino acid from the sequence of amino acids of a protein p might totally

change its functionality while inserting the same amino acid into the sequence of

amino acids of p might not make a huge difference in its role. More generally,

each insertion, deletion or substitution may change the functionality of the original
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C S T P A G · · ·
C 9 -1 -1 -3 0 -3
S -1 4 1 -1 1 0
T -1 1 4 1 -1 1
P -3 -1 1 7 -1 -2
A 0 1 -1 -1 4 0
G -3 0 1 -2 0 6
... . . .

Table 2.1: A part of BLOSUM62 matrix. Row and Columns are indexed by amino
acids. Note how having no substitution (diagonal values) has a positive score and
most of the other elements have negative or small values.

protein in different degrees, therefore different costs should be assigned for each of

these mutations. In addition, all amino acids are not equally similar and the varying

compatibility between amino acids needs to be considered when substitution cost

is being calculated. Because of the difficulty of this challenge, scientists assume

each mutation can affect the functionality of the protein independently of the other

mutations. By using this simplifying assumption, the problem of varying amino

acids compatibility can be solved by using a substitution cost matrix.

A substitution matrix assigns each possible substitution to a score-value which

is used to calculate the total cost of alignment. In this matrix, substituting each

amino acid with itself (having no mutation) has a relatively large positive value and

most of the other substitutions have a small positive or a negative value. There are

lots of substitution matrices that can be used as a measurement metric for similarity

of amino acids, such as Point Accepted Mutation (Dayhoff et al., 1978) or Block

Substitution Matrix (BLOSUM) (Henikoff and Henikoff, 1992). There are several

BLOSUM matrices based on different databases, each named with a number. BLO-

SUM with higher numbers are designed for comparing closely related sequences,

while BLOSUM with lower numbers are designed for comparing less related se-

quences. Table 2.1 shows a part of BLOSUM62 substitution matrix.

Dynamic programing and FASTA (Pearson and Lipman, 1988) are two ap-

proaches that use alignment to compare primary biological sequence information

— e.g., the amino-acid sequences of different proteins. These algorithms compare

one query sequence to another or to a database of sequences and identify the simi-
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larity between these sequences and also can find the regions of similarity between

them. This similarity is determined by comparing the amino-acid sequences of the

proteins using alignment. However, the functionality of a protein is not sensitive to

some modifications. Basic Local Alignment Search Tool (BLAST) (Altschul et al.,

1990) is another sequence comparison approach, which uses non-sensitivity of pro-

tein functionality to improve its running speed. This improvement is essential for

biological projects when millions of comparisons should be made (Altschul et al.,

1990). This efficiency comes at a cost: while dynamic programming can guaran-

tee the optimal alignments of the query and database sequences, BLAST cannot.

FASTA is also more accurate than BLAST when the similarity of less similar se-

quences is calculated. However, in our problem, using BLAST is beneficial because

the main focus of our system is to find the most similar sequences and BLAST

and FASTA are equivalent for highly similar sequences and BLAST is faster than

FASTA (Krawetz and Womble, 2003).

In general, BLAST takes as input a specific protein p and a database of pro-

teins D, and returns a mapping, BLASTp,D, from each protein p′ ∈ D to R, where

BLASTp,D(p′) is a measure of how similar p′ is to p. The similarity result is de-

pendent on the database, including its size. For each protein comparison, BLAST

returns a vector of values, including a similarity score, percent identity and an e-

value, where smaller e-values indicate higher similarity.

2.4 Sub-cellular Localization

Eukaryotic cells can be divided into functionally distinct parts, called sub-cellular

localizations. Each protein inside the body of a eukaryotic organism belongs to one

or more subcellular localizations. For example, nuclear proteins are located in the

nucleus and plasma membrane proteins are inside the cell membrane. Knowledge

of the sub-cellular localization of a protein is important for understanding the func-

tionality of the protein. For example, as plasma membrane proteins are exposed to

the outside of the cell, they are important for cell-cell communication or signaling.

Some of the major sub-cellular localizations are nucleus, cytoplasm, peroxisome,
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Figure 2.8: Schematic of sub-cellular components in a typical animal cell. (This
figure is taken from Chou and Shen, 2009)

mitochondria, plasma membrane, lysosome, golgi apparatus, endoplasmic reticu-

lum and extracellular space (Wallace et al., 2001). Figure 2.8 provides a schematic

of some of these sub-cellular components.

2.5 Transmembrane Regions

Proteins that span the membrane of a cell are called transmembrane proteins. These

proteins have two major types: Alpha-helical and Beta-barrels. The former pro-

teins, which form the major category of transmembrane proteins, are present in the

inner membranes of bacterial cells and the plasma membrane of eukaryotes. The

latter proteins are found in outer membranes and cell walls of some bacteria and

in the membranes of mitochondria and chloroplasts (Wallace et al., 2001). As this
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dissertation only addresses eukaryotes, we ignore beta-barrel proteins and focus on

alpha-helical proteins.

An alpha helix is a coiled conformation, resembling a spring, in which every

backbone N-H group donates a hydrogen bond to the backbone C=O group of a near

by amino acid (Wallace et al., 2001). Not all amino-acids have the same potential

to form an alpha helix structure. For example, methionine, alanine, leucine, un-

charged glutamate, and lysine all have especially high helix-forming propensities,

whereas proline, glycine and negatively charged aspartate have poor helix-forming

propensities (Pace and Scholtz, 1998). There are some experimental methods for

determining an alpha helix. However, there are some methods that can predict alpha

helixes in given amino acid sequences. Ganapathiraju et al. (2008) present one of

these approaches. These methods can be used to predict transmembrane domains.

Figure 2.9: Schematic representation of transmembrane proteins: 1- A single trans-
membrane alpha-helix 2- An alpha-helical protein with three membrane regions.
The membrane is represented in light brown. (This figure is taken from Wikipedia,
2009)

Predicting transmembrane helices enables prediction of which parts of the pro-

tein are inside the cell and which parts are outside and how many times the protein

crosses the membrane. Each sub-sequence of amino acids that are completely in-

side the membrane is called a transmembrane region or simply a membrane region.
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The number of membrane regions of the protein is the number of times that the

protein crosses the membrane. Figure 2.9 shows two proteins, one with a single

cross over the membrane and one with three membrane regions.

2.6 Signal Peptide

A signal peptide is sometimes referred to as a protein’s “zip code”. It is a short

3-60 amino acid long peptide chain that directs the transport of a protein. It targets

a protein across the endoplasmic reticulum membrane in eukaryotes. By default

these proteins are transported through the golgi apparatus and exported by secretory

vesicles, but some of them stay in the endoplasmic reticlulum or the golgi or go back

to the lysosomes (Emanuelsson et al., 2007).

Although, there is no simple sequence for signal peptides, there are some pre-

dictors that predict signal peptide zones, such as Käll et al. (2007). These predictors

are able to indicate whether a protein has a signal peptide or not. The output of a

signal peptide predictor can be used as one of the features of the proteins for other

classifications, such as its role in a signaling pathway.
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Chapter 3

Pathway Prediction

The architecture of the entire pathway prediction system along with the functional-

ities of each sub-system are described in this chapter. Section 3.1 gives an overview

of our prediction system. It describes how various sub-systems are connected to

each other and how they work together. Section 3.2 shows how pathways, which

are both inputs and outputs of our system, are modeled. This section also defines

specialized terms that are used in the next sections. The rest of this chapter (Sec-

tion 3.3 through Section 3.5) describes each individual sub-system in detail.

3.1 System architecture

Given a species’ proteome (i.e., the set of its proteins) and a library of known sig-

naling pathways, the Predict Signaling Pathway (PSP) system predicts which of

these proteins play which role in each of these signaling pathways for that species.

Our PSP system has three sub-systems, Make Model Signaling Pathway (MMSP),

Train Signaling Pathway Classifiers (TSPC) and Predict Signaling Pathway Roles

(PSPR).

MMSP is a sub-system of PSP that receives a set, S, of known homologous

pathway instances of various species, and creates a union model by merging them

together. This union model, which is the output of MMSP, is used as the structure to

predict pathway roles of query proteins (see Section 3.3). TSPC uses the proteomes

of the species in S to train one classifier for each role of the union model created

by MMSP. Each of these classifiers is responsible for predicting the proteins in one
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Figure 3.1: Overview of Predict Signaling Pathway (PSP): Given the Mπ
S pathways

of various species S, MMSP builds the union model M̂π. TSPC uses the proteomes
PS of these species (not shown) to train one classifier γρ for each role ρ of M̂π

(corresponding to each node). Finally, PSPR uses these classifiers along with the
proteome of a new species SNew to predict which protein(s) will qualify for each
role in this π signaling pathway in this new species.

node of the pathway (see Section 3.4). PSPR is the last part of PSP, the prediction

step. It uses trained classifiers along with the union model and proteome of a new

species Snew to predict the pathway instance in Snew. Figure 3.1 gives an overview

of the whole system.

3.2 Pathway Representation

In general, a pathway structure is a directed graph that describes the relations be-

tween proteins1 in a signaling pathway. Each node of the graph represents a role of

1In general, these graphs can also include compounds – i.e., small molecules. However, we
ignore them for this dissertation, focusing on only the proteins.
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the pathway and specifies a set of proteins that play that role. Each arc represents a

relation (activation, inhibition, binding, etc.) between its source node and its target

node. Figure 3.2 depicts a small part of the MAPK pathway structure in human,

showing nine relation arcs of three different types. An activation arc “α → β” in-

dicates that proteins in the source node α can activate proteins in the target node β;

an inhibition arc “−|” indicates that proteins in the source node inhibit proteins in

the target node; and a bind-to arc “–” means that any protein in the source node can

bind to any protein in the target node. For example, Figure 3.2 shows that proteins

in the SOS, RasGRP and PKC nodes can activate proteins in the Ras node, while

proteins in the Gap1m and NF1 nodes can inhibit proteins in the Ras node.2 We

take our pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa et al., 2008), but other sources could be used as long as they have an

appropriate graph structure.

We represent signaling pathways using the following notation. Each pathway

M = 〈N, A〉 is a graph where each node n ∈ N has an associated “role”, and a set

of associated proteins P n, and the arcs A ⊆ N ×N are a subset of pairs of nodes,

each labeled with a type a(〈n′, n′′〉) ∈ { activation, inhibition, phosphorylation,

dephosphorylation, binding }. Mπ
S denotes the instance of the π pathway for the

species S. For example, the MAPK pathway for H. sapiens is denoted MMAPK
H.sapiens; it

may be different from homologous pathways in other species — e.g., MMAPK
H.sapiens 6=

MMAPK
M.mulatta. The symbol nρ

S denotes the node with role ρ associated with species S;

e.g., nRas
H.sapiens is the human node with the Ras role. A specific node nρ

S is identified

with a single species S and it can appear in several pathway graphs of that species.

However, a role can be the label of many nodes from many different species. e.g.,

the nRaf1
H.sapiens node can appear in many different human pathways (here, it appears

in MMAPK
H.sapiens, M

V EGF
H.sapiens and MErbβ

H.sapiens), and there are many different Raf1-labeled

nodes for different species: nRaf1
H.sapiens, nRaf1

R.norvegicus, etc.

We let Rπ
S = {ρ |nρ

S ∈ Nρ
S} denote the set of roles that appear in pathway in-

stance Mπ
S = 〈Nπ

S , Aπ
S〉. For example, Ras is a member of RMAPK

H.sapiens. PS denotes

2Here we identify each node with its associated role. Hence, the “Ras node in human” refers to
the node whose role is Ras, which we write nRas

H.sapiens; see Figure 3.3
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Figure 3.2: A small part of MAPK signaling pathway structure in human.

the proteome of species S and P ρ = ∪SP ρ
S denote the union of all the proteins as-

sociated with the role ρ across all available species. Figure 3.3 presents a summary

of these, and other, terms.

3.3 MMSP Constructs the Model Pathway

There are many known cellular signaling pathways, including the eleven KEGG

pathways used in this dissertation, each with its own function. However, these path-

ways vary over different species; e.g., the VEGF pathway in P. troglodytes involves

|RV EGF
P. troglodytes| = 30 roles and 32 arcs, while the same pathway in X. laevis has only

|RV EGF
X. laevis| = 27 roles and 31 arcs. In fact, there are roles and arcs in P. troglodytes

that are not in X. laevis, and vice versa. Our goal is to use the pathways of a set

of studied species to predict the pathways of less known species. For example, we

might use the VEGF pathways of both P. troglodytes and X. laevis to find the pro-

teins participating in various roles in the VEGF pathway of a third species. This

species might have some roles and arcs that correspond to only P. troglodytes, and

other roles and arcs that correspond only to X. laevis. (In fact, the VEGF pathway

in H. Sapiens indeed has some roles and arcs corresponding to only P. troglodytes

and some other roles and arcs corresponding to only X. laevis.)

MMSP (a sub-system of PSP) starts by building a general model pathway by

combining the pathway versions for a set of model species. This requires creating

a “graph union” of the graphs for each species pathway. This approach not only

creates a diverse set of roles and arcs in the pathway structure, but also increases

the number of proteins associated with each role.
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S: species; n: node; π: (signalling) pathway; ρ: role

Mπ
S = 〈Nπ

S , Aπ
S〉 instance of π pathway for the species S; graph struc-

ture involving nodes Nπ
S and arcs Aπ

S

Mπ all models associated with pathway π, across species
M̂π the union pathway for the π pathway
Rπ

S set of roles in pathway instance Mπ
S

nρ
S nρ

M̂
node with role ρ associated in species S; in model
pathway M̂

P PS P ρ P ρ
S P ρ

M̂
all proteins ... across species; ... in species S; ...
associated with role ρ; ... role ρ in species S; ... role
ρ in model pathway M̂

P̂ ρ
S for the set of proteins predicted to serve role ρ in

species S
γρ(p) classifier associated with role ρ

PSP(Mπ, P ) “Predict Signaling Pathway”
MMSP(Mπ) “Make Model Signaling Pathway”

TSPC(M̂π, P ) “Train Signaling Pathway Classifiers”
PSPR(M̂π, PS) “Predict Signaling Pathway Roles”

Figure 3.3: Glossary of Terms used

MMSP constructs the model pathway M̂ (aka union pathway) by taking the

union of all pathway instances. The model pathway has a node nρ

M̂
for each role ρ

occurring in any of the species models, whose associated proteins P ρ

M̂
are the union

of all of the proteins associated with the same role in any species. M̂ also includes

an arc of type a between two nodes nρ1

M̂
and nρ2

M̂
if nodes with these two roles are

connected by the same type of arc in any of the individual species.3

Figure 3.4 shows an example of the union of two trivial pathways, where each

node nρ is labeled by its role ρ (on upper left bump) and shows the associated set of

proteins P ρ. The set of proteins in role b of the model pathway is the union of the

set of proteins of role b in species A and B: P b
M̂

:= P b
A ∪ P b

B. The set of arcs of

the union pathway is the union of the sets of arcs from the two pathways. Note that

there is only one arc from 〈nb
M̂

, na
M̂
〉, of type → corresponding to both 〈nb

A, na
A〉

and 〈nb
B, na

B〉.
3The same pair of nodes could be connected many times in the union pathway M̂π if they ap-

peared with different labels in different species.

30



Figure 3.4: Building the model pathway. Two instances of a pathway in two dif-
ferent species A (left) and B (middle). The model pathway (right) is created by
combining pathway instances in species A and B. The labels a, b, c, and d indi-
cate the roles of each node; hence upper node in Species A is na

M̂
, with proteins

P a
M̂

= {p1, p4}. Similarly we see P b
A = {p2} and P d

B = {p6, p7}.

3.4 TSPC Learns a Set of Classifiers

After producing this model pathway M̂ , TSPC learns a set of classifiers, one for

each of M̂ ’s roles. Each of these role-specific classifiers γρ(p) predicts whether

each protein p in a species plays the ρ role in the pathway for that species. We let

γρ:PS → {Y, N} denote the classifier associated with role ρ, where γρ(p) = Y if

the protein p plays role ρ in S and γρ(p) = N otherwise. For example, the γa(·)

classifier for the role a (not shown in Figure 3.4) returns Y if it predicts that the

protein plays role a in the pathway, and N otherwise.

There are many supervised learning methods that can learn a classifier from a

data sample whose instances are each labeled either positive or negative. Like most

standard classifiers, our γρ’s take as input a fixed-size vector of features to describe

each instance (protein). We therefore compute a fixed set of features based on the

primary amino-acid sequence of the protein. The first feature for each protein (with

regard to the classifier γρ(·)) is a measure of the similarity between that protein and

the most similar protein in the model pathway that is associated with role ρ. We use

the BLAST algorithm (Altschul et al., 1997) to compute this similarity measure.
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For our computations, we set the database D (see Section 2.3) to be the set of

proteins described in the KEGG website. We use only the e-value, where smaller

values indicate a higher similarity: In particular, the first feature value for protein

p, wrt classifier γρ, is eρ(p) = minq∈P ρ{ep,q} where

ep,q = BLASTp,DKEGG
(q) (3.1)

is the e-value of protein q wrt protein p. In the training phase, we cannot use eρ(p)

because it is zero. Therefore we use the highest similarity between the protein p

and the proteins in P ρ that do not belong to the same species as p. For example,

if p belongs to the H. sapiens we use the highest similarity between p and P ρ −

PH.sapiens.

Although the first feature depends on the union model for the role as well as

the protein, the other features depend only on the protein. The next nine features of

protein p correspond to its subcellular locations. TSPC uses the Proteome Analyst

system (Lu et al., 2004) to predict in which of the nine cellular locations this pro-

tein does its main work: nucleus, cytoplasm, peroxisome, mitochondrion, plasma

membrane, lysosome, golgi, endoplasmic reticulum and/or extracellular. Note that

a protein can be in more than one location; hence TSPC uses 9 subcellular features

(each a single bit) to encode this information. TSPC also uses the Phobius system

(Käll et al., 2007) to predict two more features for protein p: the number of mem-

brane spanning regions (a non-negative integer) and whether it is a signal peptide

or not (a bit). These features are relevant characteristics of roles in signaling path-

ways. For example, each signaling pathway should have one or more roles whose

proteins each have a positive number of membrane spanning regions since the sig-

nal must pass through some cell membrane. All together, TSPC computes twelve

features for each protein: the real-valued eρ(p), nine binary subcellular values, the

number of membrane regions and one binary feature that indicates if the protein p

is a signal peptide or not.

For training examples, TSPC uses the model pathway M̂π to obtain labeled

positive instances — e.g., for the role a in Figure 3.4, p1 and p4 serve as positive

examples. For negative examples, we use all other proteins from the set of species
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that were used to produce the model pathway. In this implementation, we consider

k = 14 species {S1, · · · , Sk} (Table 4.2), with proteome sizes varying between

7,126 proteins and 29,445 proteins, with a total of 278,201 proteins, P = ∪k
i=1PSi

across all species. The number of proteins |P ρ
S | in any single node nρ

S varied from

1 to 45 across the 5,608 nodes in the 11 different pathways (of the 14 species) that

we considered.

To train a γρ(·) classifier for each role ρ, we must identify many training in-

stances, both positive and negative. The most straightforward way to train a classi-

fier for role ρ is to use a set of proteins, P ρ, as positive examples and the compli-

mentary set, P − P ρ, as negative examples. However, this leads to a very imbal-

anced training set. Therefore TSPC used a quick cut-off on the e-value to define our

negative training set, including only those proteins p where eρ(p) < 10 as negative

training examples. This reduced the number of negative examples to approximately

1,000 instances, which creates more balanced training sets. The remaining nega-

tive training instances are the proteins that are most similar to the positive training

instances, but do not play the appropriate role. Even though the training set is still

unbalanced the results are reasonable.

For each of the 5,608 roles in the 11 union pathways, TSPC trained a Sup-

port Vector Machine (SVM) classifier (Bishop, 2006) using these labeled train-

ing instances. This system constructs a hyperplane that approximately separates

the classes, by maximizing the margin between the two data sets. We used the

libsvm 2.86 implementation of SVM (Chang and Lin, 2001) with default set-

tings and chose either linear or radial basis function kernels for each role, selecting

the one with the larger “in-fold” training accuracy obtained by cross validation; see

Section 4.2.

3.5 PSPR uses the Model Pathway to Make Predic-
tions about Novel Proteins

PSPR is the component of PSP that uses the classifiers built by TSPC, within the

model pathway M̂π, to predict which proteins of a given proteome PS , from a
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new species S, play which roles in this π pathway. For each role ρ in the model

pathway M̂π, PSPR applies ρ’s classifier γρ to each protein in PS to produce the

set P̂ ρ
S = {γρ(p) = Y | p ∈ PS}, which is the set of S’s proteins predicted

to play role ρ. For some roles, this set is empty. The “predicted pathway roles”

Rπ
S = { ρ ∈ M̂π | P̂ ρ

S 6= {} } include all roles ρ in M̂π for which P̂ ρ
S is non-empty.

We then let Nπ
S be the associated nodes in this predicted pathway, with those roles.

In addition, Mπ
S inherits all arcs from M̂π that connect nodes in Mπ

S . That is, if

nα
S, nβ

S ∈ Nπ
S and 〈nα

M̂
, nβ

M̂
〉 ∈ Aπ

M̂
then 〈nα

S, nβ
S〉 is in Aπ

S; moreover, it will have

the same label: a(〈nα
S, nβ

S〉) = a(〈nα
M̂

, nβ

M̂
〉).
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Chapter 4

Experiments

Our experiments were based on the KEGG Pathway database, using the eleven

pathways shown in Table 4.1, on the fourteen species shown in Table 4.2. As each

pathway varies in size for different species, the second and third columns of Ta-

ble 4.1 give the minimum and maximum number of roles appearing in each path-

way across the different species. For evaluation purposes, we used two different

versions of KEGG, one from 2006 and one from 2008. Table 4.1 contains summary

data from both versions, with some new roles being discovered after 2006 are only

included in the 2008 data and one role (in MAPK) being removed between 2006

and 2008. The information about the ErbB pathway is not included in the KEGG-

06 section because this pathway was added to KEGG after 2006. For our data in all

11 pathways, the number of roles in each model pathway matched the maximum

number of roles for that pathway. This was the case since there happened to be at

least one species that had all of the roles, so its number of roles was equal to this

maximum.

4.1 Evaluation

As shown in Figure 3.1, PSP takes as input a proteome PS from a novel species

S and a set of known pathways Mπ = {Mπ
S1

, . . . ,Mπ
Sk
}, corresponding to the

same π signaling pathway across multiple different species. Let M̂π be the model

pathway produced by MMSP; Mπ
S be the correct1 signaling pathway for this species

1That is, “currently accepted”; see Section 4.3.
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Table 4.1: For each signaling pathway π used: the minimum and maximum number
of roles |Rπ

Si
| across the 14 species Si, in both the 2006 and 2008 versions of the

KEGG database. Note that ErbB did not appear in KEGG 2006.

KEGG-08 KEGG-06
Pathway Min Max Min Max
MAPK 26 124 21 125
Wnt 12 67 11 67
ErbB 12 60 – –
TGF-beta 26 54 18 54
Calcium 18 43 10 41
Phosphatidylinositol 10 31 7 30
mTOR 4 29 4 29
VEGF 6 28 6 28
Jak-STAT 12 26 6 26
Notch 2 22 3 22
Hedgehog 2 18 4 18

S; and Rπ = Rπ
M̂
∪ Rπ

S be the union of the roles that appear in either M̂π or Mπ
S .

Then PSP computes a set of predictions. For each role ρ ∈ R, PSPR predicts a set

of proteins P̂ ρ
S ⊂ PS that (appear to) qualify for this role. If this ρ is not in Rπ

M̂
, then

PSP sets P̂ ρ
S := {}. Let P̂π

S = {P̂ ρ
S}ρ be the entire collections of these protein-sets,

one for each role. Similarly let P ρ
S ⊂ PS is the true set of proteins associated with

this role ρ, and Pπ
S := {P ρ

S}ρ. We again set P ρ
S := {} if this ρ is not in P̂π

S .

Ideally, if PSP worked perfectly, then Rπ
M̂

would match Rπ
S , and for each role

ρ, the predicted set P̂ ρ
S would exactly match the true set of proteins P ρ

S . To compare

Rπ
M̂

with Rπ
S , we therefore compute their similarities over all of their roles, based

on

q̂ =
⋃

ρ∈Rπ
M̂

, p∈P̂ ρ
S

〈ρ, p〉 q =
⋃

ρ∈Rπ
S , p∈P ρ

S

〈ρ, p〉

which are each a set of pairs whose first component is the role and whose second is

one of the proteins of that role. We then define the similarly between Rπ
M̂

and Rπ
S

based on the F-measure of the associated q̂ and q:

F (q̂, q) =
2 · |q̂ ∩ q|
|q̂|+ |q|

=
2 · Precision · Recall
Precision + Recall
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which uses

Precision =
|q̂ ∩ q|
|q̂|

Recall =
|q̂ ∩ q|
|q|

(4.1)

Note this F-measure ranges from 0 to 1, and is only 1 if P̂ ρ
S = P ρ

S for all ρ ∈ Rπ.

We use “leave out one species” cross-validation to estimate the accuracy of PSP.

We start with k = 14 species {S1, . . . , Sk}, with known proteomes Pi = PSi
and

let pathway M j
i be the jth pathway of the ith species. Here, for each pathway M j ,

for each species i = 1..k, we compute

M̂ j
i = M̂ j(Pi) = PSP ({M j

1 , . . . ,M
j
i−1, M

j
i+1, . . . ,M

j
k}, Pi)

then compute the overall score – the (precision, recall, F-measure) triple – for each

of the roles in M̂ j
i and M j

i :

sj
i = Score(M j

i , PSP ({M j
1 , . . . ,M

j
i−1, M

j
i+1, . . . ,M

j
k}, Pi))

Finally, for each species Si with m known signaling pathways {M1
i , . . . ,Mm

i }, we

then compute the average triple ES(Si) = 1
m

∑m
j=1 sj

i .

4.2 Empirical Results

Table 4.2 shows the results of our predictions, listing the average precision, recall

and F-measure scores for each of the fourteen species ES(Si). The “Total” row is

the average of the 14 values. This table also includes the number of proteins in

PS and the total number of roles, over the pathways considered. We see that, in

12 of the 14 species, the average recall is over 0.85, meaning that PSP is able to

find essentially all of the relevant proteins for the roles (average recall = 0.913);

the average precision of 0.724 shows that it occasionally included a few too many

proteins. Moreover, the F-measures of only the two “*” ed species — i.e., S. scrofa

(pig) and D. rerio (zebra fish) — are below 0.70; in both cases due to low precision

(i.e., many false positives). We discuss this result in Section 4.3.

Table 4.3 presents our results from another point of view. Here we categorized

the results based on pathways instead of species — i.e., this is the average over

all the species for each of the pathways. This shows our prediction is accurate for
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Table 4.2: From left to right: Species; Number of proteins in the species; Number
of roles in each species over all considered pathways; Precision/Recall/F-measure
of pathway predictions (averaged over all considered pathways).

Species Proteins Roles Precision Recall F-measure
Homo sapiens [Man] 24200 500 0.877 0.938 0.904
Canis familiaris [Dog] 19807 474 0.847 0.914 0.877
Mus musculus [Mouse] 29445 501 0.825 0.923 0.868
Pan troglodytes [Chimpanzee] 25185 449 0.862 0.879 0.864
Macaca mulatta [Monkey] 23964 451 0.831 0.908 0.864
Gallus gallus [Chicken] 18115 433 0.857 0.870 0.861
Monodelphis domestica [Opossum] 19114 441 0.798 0.920 0.852
Rattus norvegicus [Rat] 26160 476 0.793 0.920 0.850
Ornithorhynchus anatinus [Duck-

bill platypus]

16387 406 0.804 0.722 0.751

Xenopus laevis [African frog] 10623 322 0.606 0.940 0.732
Bos taurus [Bull] 22327 399 0.592 0.921 0.716
Xenopus tropicalis [Western frog] 8228 242 0.588 0.916 0.712

*Danio rerio [Zebrafish] 27520 383 0.533 0.824 0.642
*Sus scrofa [Pig] 7126 131 0.315 0.902 0.457
Total 278201 5608 0.724 0.893 0.782

Table 4.3: Precision/Recall/F-measure of pathway predictions (averaged over all
considered species).

Pathway Precision Recall F-measure
TGF-beta 0.816 0.955 0.871
mTor 0.781 0.896 0.821
ErbB 0.761 0.894 0.809
Jak-STAT 0.826 0.796 0.797
Phosphatidylinositol 0.716 0.920 0.785
Wnt 0.677 0.934 0.768
Notch 0.792 0.906 0.768
MAPK 0.695 0.897 0.762
VEGF 0.702 0.867 0.757
Hedgehog 0.648 0.936 0.754
Calcium 0.645 0.819 0.713
Total 0.724 0.893 0.782

almost all of the pathways and the overall high F-measure (seen in Table 4.2 for

species) is not just due to some specific pathways.

Table 4.4 shows the effect of each of the features used by our γρ(·) classifiers.

38



Table 4.4: Precision/Recall/F-measure of pathway predictions (averaged over all
considered species and pathways). Each row provides the accuracy of the prediction
after using the feature mentioned along with the features mentioned in upper rows.

Feature/approach Precision Recall F-measure
e-value 0.696 0.854 0.752
+ sub-cellular localization 0.698 0.858 0.755
+ membrane regions 0.692 0.865 0.756
+ signal peptide 0.679 0.862 0.746
+ kernel selection 0.724 0.893 0.782

Table 4.5: (left) Number of arcs in each species over all considered pathways;
(right) Precision/Recall/F-measure of pathway predictions calculated for arcs (av-
eraged over all considered pathways)

Species #Arcs Precision Recall F-measure
C. familiaris [Dog] 492 1.000 0.995 0.997
M. musculus [Mouse] 443 1.000 0.960 0.980
H. sapiens [Man] 536 1.000 0.960 0.980
M. mulatta [Monkey] 536 0.967 0.977 0.972
M. domestica [Opossum] 460 0.965 0.967 0.966
R. norvegicus [Rat] 500 0.939 0.957 0.948
G. sallus [Chicken] 437 0.958 0.937 0.945
P. troglodytes [Chimpanzee] 458 0.951 0.888 0.913
D. rerio [Zebrafish] 346 0.840 0.999 0.911
B. taurus [Bull] 369 0.759 1.000 0.858
X. laevis [African frog] 233 0.735 1.000 0.847
O. anatinus [Duckbill platypus] 384 1.000 0.657 0.785
X. tropicalis [Western frog] 131 0.553 0.995 0.710
S. scrofa [Pig] 49 0.329 1.000 0.494
Total 5374 0.870 0.948 0.888

The first row, e-value, shows our predictive accuracy using only the single feature,

e-value, which measures the highest similarity between the target protein and the

proteins in this role. The values in the table are the average precision, recall and

F-measures scores for all the fourteen species. The second row shows the effects

of adding the 9 sub-cellular localization features; we see this slightly improves all

three of the measures. The third row shows the effect of also adding the number

of membrane spanning regions to the features — which makes essentially no dif-

ference. The values of the fourth row are obtained after adding signal peptide as

the last feature of our classifier. While we can see that F-measure has dropped by
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a small value, this is not statistically significant (1-sided paired t-test, p ≈ 0.90).

However, when combined with our final change (kernel selection), this feature turns

out to give a higher F-measure than if it is not used. The final row represents our

most accurate classifier. It shows the advantages of allowing PSPR to decide which

kernel to use in the support vector machine: linear versus radial basis function (rbf).

We see that this made an improvement to the F-measure, from 0.746 to 0.782 which

is statistically significant — p < 3E-05. Even though adding the “signal peptide”

feature had not improved the F-measure (third ”addition” of Table 4.4), we found

that the average F-measure of the classifiers that exclude this feature (but include

“kernel selection”) is only 0.768, which is inferior to the classifiers that include

it, at the 0.782 shown in Table 4.4. This is true in general: kernel selection helps

increase our accuracy.

Note that this selection (linear or rfb) is done completely automatically, without

any human input. Here, for each species Si in Table 4.2, we remove Si from the

training set and run cross validation on the rest of the data (for the 13 other species).

For each such fold, PSPR excludes species Sj from the training set (in addition to

Si) and for each role ρ ∈ Rπ
M̂

in each pathway π, PSPR trains two classifiers (SVM-

linear and SVM-rbf) on the remaining 14 − 2 = 12 species, and compares the

accuracy of these classifiers on Sj . After repeating the process for all the species in

the training set, PSPR calculate the average prediction accuracy for each of SVM-

linear vs SVM-rbf for this role ρ in this pathway π, then selects the kernel function

with the highest average performance value. The final classifier for that role ρ uses

this kernel function. Across all classifiers, 1792 linear kernels and 5262 radial-basis

functions kernels were selected.

The first row of Table 4.4 shows that running the SVM learner on the e-value,

alone, gives a fairly high F-measure. This suggests two other, simpler approaches:

First, we could just use this e-value directly to identify the proteins. Here, for each

role ρ with associated proteins P ρ, for each q ∈ P ρ we compute ep,q (Equation 3.1)

with respect to each p ∈ PS for the proteome PS of the novel species S, and simply

set P̂ ρ
S = {p ∈ PS | ∃q ∈ P ρ, ep,q < 1E-100} to be those proteins in the novel

species with an e-value less than 1E-100 to some proteins in the model pathway.
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(We used 1E-100 as the threshold as was empirically determined this was the best

cut-off value in {1E-200, 1E-100, 1E-50, 1E-25, 1E-10, 1E-5}.) This produced an

average leave-out-one-species F-measure (over the 11 pathways and 14 species) of

only 0.650, which is 10.2% less than using SVM on the e-value alone (Table 4.4),

and 13.2% worse than our best system. Second, we can view e-value as the basis for

a nearest-neighbor classifier. For each protein q ∈ P ρ, we find the p ∈ PS with the

smallest e-value: nn(q ; PS) = arg minp∈PS
{ep,q}, then let P̂ ρ

S = {nn(q ; PS) | q ∈

P ρ}. The average F-measure here was 0.730, which was significantly lower than

our best result (1-sided paired t-test, p < 3E-3).

We also considered the multi-class classifier approach, of learning a single clas-

sifier for each pathway, that maps each protein to a role. The classifier returns one

of |Rπ
M̂
|+1 values for each protein (the extra “1” accounts for “none of the above”).

However, this would force us to predict (at most) one role for each protein, rather

than a set of roles. This is problematic as many proteins (1359 in our training set)

belong to more than one role, which is why we could not use this approach.

Table 4.5 shows the average precision, recall and F-measure scores for predict-

ing the arcs in the various pathways. Here, PSP includes an Aπ
S arc in a predicted

model if it predicts at least one protein for each end. For example, if it was seeking

the Model pathway (from Figure 3.4) within the proteome of species C, PC , we

would include the “b → c” arc if at least protein from PC qualified for the “b” role,

and at least one PC protein qualified for the “c” role – P̂ a
C and P̂ b

C are non-empty.

(Note that we do not require that these qualifying proteins are correct.) This would

be a false positive if the Model pathway of species C did not include this “b → c”

arc.

While the focus of this system is predicting which proteins fill which roles of

the pathways, Table 4.5 shows our system does accurately identify most of the arcs

in the examined species as well as the proteins in the associated roles.

We see that PSP can effectively predict the roles, and arcs, of essentially all

available signaling pathways in all species, except possibly the two marked with

*’s in Table 4.2. However, the result for these two species may actually be better

than they appear; see the next section.
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Table 4.6: (left) Number of proteins in each species, PS , and number of roles over all considered pathways, for each of the 2006 and
2008 versions of KEGG; Precision/Recall/F-measure of pathway predictions (average over all considered pathways): (middle) trained
and tested on KEGG-06; (right) trained on KEGG-06 and tested on KEGG-08.

KEGG-06 KEGG-08 KEGG-06 / KEGG-06 KEGG-06 / KEGG-08
Species Proteins Roles Proteins Roles Precision Recall F-measure Precision Recall F-measure
S. scrofa 1,062 104 7,126 131 0.845 0.878 0.852 0.686 0.667 0.670
H. sapiens 25,719 440 24,200 500 0.885 0.814 0.842 0.879 0.805 0.835
M. musculus 30,172 436 29,445 501 0.839 0.832 0.827 0.839 0.816 0.820
R. norvegicus 26,259 379 26,160 476 0.691 0.893 0.776 0.776 0.881 0.822

*B. taurus 22,854 218 22,327 399 0.345 0. 869 0.479 0.637 0.861 0.721
*C. familiaris 19,808 155 19,807 474 0.205 0.857 0.318 0.812 0.838 0.821
*P. troglodytes 21,825 139 25,185 449 0.186 0.653 0.262 0.840 0.634 0.715
Total (7 species) 147,699 1,871 154,250 2,930 0.563 0.827 0.615 0.783 0.788 0.773
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4.3 Alternative Historical Evaluation

The predictive accuracies in Table 4.2 show that the precision is relatively low for

two species (the “*”ed ones) — which are species that have not been extensively

studied. We therefore wondered if PSP’s accuracy for these species might actually

be higher than these reported rates. That is, our F-measure scores are based on

the (allegedly) “true” set of proteins associated with each role. However, many

signaling pathways, especially those in understudied species, are not yet complete;

researchers are still updating these pathways, typically by adding new proteins to

roles. This means our evaluation may be wrong when it declares a predicted protein

to be a false positive: i.e., when PSP predicts a protein qualifies for a role ρ, but

this protein is not in the current P ρ
S . It is possible that PSP is actually correct as P ρ

S

is incomplete, in that this protein should be a member of P ρ
S . Counting this protein

as a false positive will (incorrectly) reduce PSP’s precision score for this pathway

of this species.

To test the possibility, we ran our PSP system on historical data: i.e., we trained

classifiers based on the 2006 version of KEGG (KEGG-06), and used these classi-

fiers to make predictions on the (2006) proteomes of various species. The “KEGG-

06/KEGG-06” columns in Table 4.6 provide these scores, when using the “2006

versions of the truth”. (This involves only 7 of the 14 species, as the 2006 KEGG

database did not include the data required for the other seven species.) Note espe-

cially the abysmal precision values for C. familiaris, P. troglodytes and B. taurus

(the “*”ed ones). Our argument suggests this may be because, in 2006, these species

had not been well annotated. If so, then we anticipate our predictions would better

match the “2008 versions of the truth” — i.e., the P ρ
S for each role of these species

based on KEGG-08.

The “KEGG-06 / KEGG-08” columns of Table 4.6 show the results of using

KEGG-08 as ground truth to evaluate the predictions made by the “KEGG-06 clas-

sifier”. We find a statistically significant improvement in the average precision

(compared to KEGG-06/KEGG-06): from 0.615 to 0.773 — due largely to huge

improvements in precision for those three species, coupled with minimal reductions
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in recall. This shows that many of the predictions based on KEGG-06 were correct,

even though they involved claims that were not included in KEGG-06. In total,

KEGG-08 included 1,620 proteins that we considered false positives when we eval-

uated the predictions based on KEGG-06 data, that turned out to be true positives.

This is why we suspect that many of the false-positives found using KEGG-08 may

actually be correct — i.e., that PSP’s actual precision may be higher than the 0.782

found when training and testing on KEGG-08, as shown in Table 4.2. Note also

that the annotations present in 2008 but not 2006 are very likely to be experimen-

tally determined; if they were purely analytic, we suspect they would have been

present in 2006. Hence, this “train on 2006, test on 2008” measure is tested on

annotations that are probably more accurate than the alternative of just removing a

random subset of the 2008 data.
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Chapter 5

Conclusion

This dissertation provides a new technique for learning to predict signaling path-

ways in novel species, based on known signaling pathways in familiar species. This

technique is completely automated – i.e., it does not need human adjustments at any

level and is based on various automatically-computed properties of proteins.

We have shown that our approach produces accurate predictions over all of the

species and pathways we considered — i.e., total precision, recall and F-measure

of 0.724, 0.893 and 0.782 respectively. We have also used historical data to in-

dicate why we think that the actual accuracy of our prediction might be even

higher than reported here, due to incompleteness of the test sets. The webpage

(http://cs.ualberta.ca/∼bioinfo/signaling) provides the complete set of these PSP’s

predictions; it will be interesting to see which of these predicted roles turn out to

be correct. Moreover, our overall PSP system is expandable, as other species and

other pathways can easily be added to the system. In addition, new features (per-

haps, based on protein-protein interaction, or protein domains) may be used along

with the described features to potentially increase the accuracy of its predictions.

(Note that many of these results have been published as Bostan et al. (2009).)
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Fröhlich, H., Fellmann, M., Sültmann, H., Poustka, A., and Beibbarth, T. (2008). Predicting
pathway membership via domain signatures. Bioinformatics, 24(19), 2137–2142.

46



Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D.
(2000). Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics, 16(10), 906–914.

Ganapathiraju, M., Balakrishnan, N., Reddy, R., and Klein-Seetharaman, J. (2008). Trans-
membrane helix prediction using amino acid property features and latent semantic anal-
ysis. BMC Bioinformatics, 9(6).

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer
classification using support vector machines. Mach. Learn., 46(1-3), 389–422.

Hall, N. (2007). Advanced sequencing technologies and their wider impact in microbiol-
ogy. J Exp Biol, 210(9), 1518–1525.

Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices from protein
blocks. Proc Natl Acad Sci U S A, 89(22), 10915–10919.

Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., and Takagi, T. (2001). Assessment of
prediction accuracy of protein function from protein–protein interaction data. Yeast,
18(6), 523–531.

Hoffmann, R. and Valencia, A. (2004). A gene network for navigating the literature. Nat
Genet, 36(7).

Käll, L., Krogh, A., and Sonnhammer, E. L. (2007). Advantages of combined transmem-
brane topology and signal peptide prediction–the phobius web server. Nucleic acids
research, 35(Web Server issue).

Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T.,
Kawashima, S., Okuda, S., Tokimatsu, T., and Yamanishi, Y. (2008). Kegg for linking
genomes to life and the environment. Nucleic Acids Research, 36(suppl 1).

KEGG (2009a). Kegg pathway: Notch signaling pathway - reference path-
way (ko). http://www.genome.jp/kegg-bin/show pathway?org name=
ko&mapno=04330&mapscale=1.0.

KEGG (2009b). Kegg pathway: Synthesis and degradation of ketone bodies - reference
pathway (reaction). http://www.genome.jp/kegg-bin/show pathway?
org name=rn&mapno=00072&mapscale=1.0.

Kim, J. H., Lee, J., Oh, B., Kimm, K., and Koh, I. (2004). Prediction of phosphorylation
sites using SVMs. Bioinformatics, 20(17), 3179–3184.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and
model selection. In IJCAI, pages 1137–1145.

Krawetz, S. A. and Womble, D. D. (2003). Introduction to Bioinformatics: A Theoretical
And Practical Approach. Humana press.

Lu, Z., Szafron, D., Greiner, R., Lu, P., Wishart, D., Poulin, B., Anvik, J., Macdonell, C.,
and Eisner, R. (2004). Predicting subcellular localization of proteins using machine-
learned classifiers. Bioinformatics, 20(4), 547–556.

47



Ma, H. and Zeng, A.-P. (2003). Reconstruction of metabolic networks from genome data
and analysis of their global structure for various organisms. Bioinformatics, 19(2), 270–
277.

Moss, G. P. (2009). Biochemical nomenclature committees. http://www.chem.
qmul.ac.uk/iupac/jcbn/.

Nielsen, H., Brunak, S., and von Heijne, G. (1999). Machine learning approaches for the
prediction of signal peptides and other protein sorting signals. Protein Eng., 12(1), 3–9.

Ohta, T., Tateisi, Y., and Kim, J.-D. (2002). Genia corpus: an annotated research abstract
corpus in molecular biology domain. In Proceedings of HLT , San Diego, USA.

Pace, C. N. and Scholtz, J. M. (1998). A Helix Propensity Scale Based on Experimental
Studies of Peptides and Proteins. Biophysical Journal, 75(1), 422–427.

Park, K.-J. and Kanehisa, M. (2003). Prediction of protein subcellular locations by support
vector machines using compositions of amino acids and amino acid pairs. Bioinformat-
ics, 19(13), 1656–1663.

Pearson, W. R. and Lipman, D. J. (1988). Improved tools for biological sequence compar-
ison. Proceedings of the National Academy of Sciences of the United States of America,
85(8), 2444–2448.

Pireddu, L., Szafron, D., Lu, P., and Greiner, R. (2006). The path-a metabolic pathway
prediction web server. Nucleic Acids Research, 34, 714–719.

Schilling, C. H., Schuster, S., Palsson, B. O., and Heinrich, R. (1999). Metabolic pathway
analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol
Prog, 15(3), 296–303.

Takahashi, N. (2009). Research of N. Takahashi. http://www-kairo.csce.
kyushu-u.ac.jp/∼norikazu/research.en.html.

Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer,
K., Muruganujan, A., and Narechania, A. (2003). PANTHER: A Library of Protein
Families and Subfamilies Indexed by Function. Genome Research, 13(9), 2129–2141.

Vázquez, A., Flammini, A., Maritan, A., and Vespignani, A. (2003). Global protein func-
tion prediction from protein-protein interaction networks. Nat Biotechnol, 21(6), 697–
700.

Wallace, R. A., Sanders, G. P., and Ferl, R. J. (2001). Biology: The science of life (4th
edition). HarperCollins Publishers.

Wikipedia (2009). Transmembrane protein - wikipedia, the free encyclopedia. http:
//en.wikipedia.org/wiki/Transmembrane protein.

Yaffe, M. B., Leparc, G. G., Lai, J., Obata, T., Volinia, S., and Cantley, L. C. (2001). A
motif-based profile scanning approach for genome-wide prediction of signaling path-
ways. Nature Biotechnology, 19(4), 348–353.

48


